
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3715785
.

.

RESEARCH-ARTICLE

On the Unnecessary Complexity of Names in X.509 and
Their Impact on Implementations

YUTENG SUN, Chinese University of Hong Kong, Hong Kong, Hong Kong
.

JOYANTA DEBNATH, Stony Brook University, Stony Brook, NY, United
States
.

WENZHENG HONG
.

OMAR CHOWDHURY, Stony Brook University, Stony Brook, NY, United
States
.

SZE YIU CHAU, Chinese University of Hong Kong, Hong Kong, Hong
Kong
.

.

.

Open Access Support provided by:
.

Chinese University of Hong Kong
.

Stony Brook University
.

PDF Download
3715785.pdf
29 December 2025
Total Citations: 0
Total Downloads: 260
.

.

Published: 19 June 2025
Accepted: 14 January 2025
Received: 13 September 2024
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Soware Engineering, Volume 2, Issue FSE (June 2025)
hps://doi.org/10.1145/3715785

EISSN: 2994-970X

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3715785
https://dl.acm.org/doi/10.1145/3715785
https://dl.acm.org/doi/10.1145/contrib-99661639424
https://dl.acm.org/doi/10.1145/institution-60002798
https://dl.acm.org/doi/10.1145/contrib-99659910689
https://dl.acm.org/doi/10.1145/institution-60026415
https://dl.acm.org/doi/10.1145/institution-60026415
https://dl.acm.org/doi/10.1145/contrib-99661062207
https://dl.acm.org/doi/10.1145/contrib-99661639253
https://dl.acm.org/doi/10.1145/institution-60026415
https://dl.acm.org/doi/10.1145/institution-60026415
https://dl.acm.org/doi/10.1145/contrib-99659326346
https://dl.acm.org/doi/10.1145/institution-60002798
https://dl.acm.org/doi/10.1145/institution-60002798
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60002798
https://dl.acm.org/doi/10.1145/institution-60026415
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3715785&targetFile=custom-bibtex&format=bibtex

On the Unnecessary Complexity of Names in X.509 and Their
Impact on Implementations
YUTENG SUN, The Chinese University of Hong Kong, Hong Kong
JOYANTA DEBNATH, Stony Brook University, USA
WENZHENG HONG, Independent, China
OMAR CHOWDHURY, Stony Brook University, USA
SZE YIU CHAU, The Chinese University of Hong Kong, Hong Kong

The X.509 Public Key Infrastructure (PKI) provides a cryptographically verifiable mechanism for authenticating
a binding of an entity’s public-key with its identity, presented in a tamper-proof digital certificate. This often
serves as a foundational building block for achieving different security guarantees in many critical applications
and protocols (e.g., SSL/TLS). Identities in the context of X.509 PKI are often captured as names, which are
encoded in certificates as composite records with different optional fields that can store various types of
string values (e.g., ASCII, UTF8). Although such flexibility allows for the support of diverse name types
(e.g., IP addresses, DNS names) and application scenarios, it imposes on library developers obligations to
enforce unnecessarily convoluted requirements. Bugs in enforcing these requirements can lead to potential
interoperability and performance issues, and might open doors to impersonation attacks. This paper focuses on
analyzing how open-source libraries enforce the constraints regarding the formatting, encoding, and processing
of complex name structures on X.509 certificate chains, for the purpose of establishing identities. Our analysis
reveals that a portfolio of simplistic testing approaches can expose blatant violations of the requirements
in widely used open-source libraries. Although there is a substantial amount of prior work that focused on
testing the overall certificate chain validation process of X.509 libraries, the identified violations have escaped
their scrutiny. To make matters worse, we observe that almost all the analyzed libraries completely ignore
certain pre-processing steps prescribed by the standard. This begs the question of whether it is beneficial to
have a standard so flexible but complex that none of the implementations can faithfully adhere to it. With our
test results, we argue in the negative, and explain how simpler alternatives (e.g., other forms of identifiers such
as Authority and Subject Key Identifiers) can be used to enforce similar constraints with no loss of security.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Interoperability; •
Networks→ Security protocols.

Additional Key Words and Phrases: X.509 Certificates, Identities and names, Compliance with standards

ACM Reference Format:
Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau. 2025. On the Unnec-
essary Complexity of Names in X.509 and Their Impact on Implementations. Proc. ACM Softw. Eng. 2, FSE,
Article FSE066 (July 2025), 21 pages. https://doi.org/10.1145/3715785

1 Introduction
The X.509 Public-Key Infrastructure (PKI) [31] has found widespread applications as the authen-
tication provider for many different critical security protocols and applications such as Internet

Authors’ Contact Information: Yuteng Sun, The Chinese University of Hong Kong, Sha Tin, Hong Kong, sy021@ie.cuhk.
edu.hk; Joyanta Debnath, Stony Brook University, Stony Brook, USA, jdebnath@cs.stonybrook.edu; Wenzheng Hong,
Independent, Shanghai, China, wzhong20@fudan.edu.cn; Omar Chowdhury, Stony Brook University, Stony Brook, USA,
omar@cs.stonybrook.edu; Sze Yiu Chau, The Chinese University of Hong Kong, Sha Tin, Hong Kong, sychau@ie.cuhk.edu.hk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE066
https://doi.org/10.1145/3715785

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0007-6961-275X
HTTPS://ORCID.ORG/0000-0001-5817-2786
HTTPS://ORCID.ORG/0009-0007-0984-1665
HTTPS://ORCID.ORG/0000-0002-1356-6279
HTTPS://ORCID.ORG/0000-0001-9300-0808
https://doi.org/10.1145/3715785
https://orcid.org/0009-0007-6961-275X
https://orcid.org/0000-0001-5817-2786
https://orcid.org/0009-0007-0984-1665
https://orcid.org/0000-0002-1356-6279
https://orcid.org/0000-0001-9300-0808
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3715785

FSE066:2 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

Protocol Security (IPSec), Transport Layer Security (TLS), and Secure/Multipurpose internet Mail
Extensions (S/MIME). At its core, X.509 PKI provides a cryptographically verifiable way for estab-
lishing a trusted binding between an entity’s public key and its identities, which is presented in a
tamper-proof container called digital certificate. This ability to authenticate entities often serves as
the foundation for other security guarantees, such as confidentiality and non-repudiation.

Each certificate has an issuer, typically a Certificate Authority (CA), and a subject (i.e., the owner
of the certificate), in which the issuer vouches for the public key-identity binding of the subject by
digitally signing the certificate with its own private key. In general, when a communicating peer 𝑝1
wants to authenticate itself to another peer 𝑝2, 𝑝1 presents a chain of certificates including its own
certificate as evidence. It is the responsibility of 𝑝2 to establish the authenticity of this evidence,
starting from its trust anchors (a collection of CA certificates unconditionally trusted by 𝑝2) to
𝑝1’s certificate through the issuer-subject relationship. This is typically done in accordance to the
algorithm prescribed in RFC 5280, sometimes known as the X.509 certificate chain validation. After
establishing the chain validity, 𝑝2 then needs to check that the identities conveyed on the certificate
of 𝑝1 indeed match the expectations of 𝑝2. This is often referred to as hostname verification for
domain name-based identities.
Conceptually, authenticating an entity with certificates can be decomposed into the following

high-level steps: ❶ parsing the certificates in the input chain and the system’s trust anchors; ❷
building candidate certificate chains using certificates present in the input chain and other known
certificates, such that the candidate chain starts from a trust anchor and maintains the issuer-subject
relationship between every two adjacent certificates of the chain; ❸ verifying the digital signature of
each certificate of the candidate chain using the public-key of its predecessor; ❹ imposing additional
restrictions stipulated in other certificate fields and extensions; ❺ checking whether the identity
of the subject in the last certificate of the candidate chain is the same as the expected identity
of the peer to be authenticated. While prior work has analyzed in depth steps ❹ [4, 7, 11, 33]
and ❸ [8, 24, 36], only limited attempts have been put on investigating step ❺ [32]. Also, the
investigations on ❷ so far only concern about a very limited subset of the subject and issuer names
outlined in the standard documents [7, 11]. This paper focuses on analyzing the implementations of
steps ❷ and ❺ in open-source libraries.
Identities play a critical role in the realization of the authentication process described above,

especially in steps ❷ and ❺. Identities in this context are represented as names. One can possibly
have three types of names in a certificate that play a role in the authentication process1, namely,
issuer name, subject name, and the optional subject alternative names (an extension called SAN),
which can be viewed as aliases of the subject’s name. Step ❷ mainly involves the first two types,
whereas step ❺ focuses on SAN (when present) or subject name (typically when SAN is absent). At
the core, both steps ❷ and ❺ checks to see whether two names match, although the semantics of
what is considered a match can be substantially different in both cases. As an example, SAN may
have wild card characters which may require matching a string with a regular expression. Also,
names might go through different canonicalizations and transformations (e.g., LDAP stringprep for
❷ and Punycode for ❺) before they get matched.

Although the idea of having string-based names to describe the identities bound by certificates is
intuitive, correctly implementing steps ❷ and ❺ is non-trivial, in part due to flexible and complexity
of how names are formatted and encoded in a certificate. Abstractly, the name fields can be viewed as
an unordered sequence of attribute-value pairs. An attribute can be absent, present with meaningful
values, or present as an empty string. Depending on the attribute types, letters in such string values
can be drawn from different character sets (e.g., subsets of ISO 10646 and ASCII) and encoded

1Issuer Alternative Name exists as an extension but is not used in certification path validation (Section 4.2.1.7 of RFC5280).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:3

differently (e.g., UTF-8, UTF-32, ASCII, etc.). An overview of the name attributes, string types and
character sets (charsets) used in X.509 certificates can be found in Tables 1 and Table 2.
Motivated by some recent vulnerabilities found in name process (e.g., CVE-2022-3602 [13] in

OpenSSL) and the research gap in investigating X.509 name checking, in this paper, we focus on
the problem of testing and analyzing the name processing and matching logic implemented in
cryptographic libraries. For analyzing the implementations, we employ a portfolio of approaches
ranging from RFC-guided test case crafting to more automated testing approaches such as adaptive
fuzz testing and dynamic symbolic execution. At a high level, we found that none of the libraries
faithfully follow the standard requirements on name processing and matching. For example, our
testing revealed that none of the libraries implement the LDAP stringprep pre-processing algorithm
prescribed for step ❷. Additionally, we found instances of out-of-bounds read and potential name
confusions in step ❺ of some libraries. A key observation from our findings is that developers
of different libraries often improvise their own ways of processing and matching X.509 names,
which do not follow the standards, and can lead to potential interoperability and security problems.
Overall, we discovered 119 instances of deviation from standard requirements
We note that the main point of this paper is not about proposing new bug finding tools that is

better than existing tools. Nevertheless, in terms of investigating implementations of X.509 name
checking, our testing has achieved better coverage than previous work. In fact, it is quite interesting
to see that even a portfolio of tried-and-true testing approaches can reveal many deviations from
the standards. That said, while some of the bugs appear to be programming blunders, for a large
portion of the findings, we do not attribute blame to the developers. Our position is that the
standards concerning names in X.509 are unnecessarily complex with no apparent benefits, and we
sympathize with the developers for not faithfully implementing all of the standard requirements,
many of which are arguably historical bloats. This position is further justified by the observation
that logical errors in step ❷ typically only contribute to interoperability and performance issues,
but do not hamper overall security, due to the cryptographic guarantees of digital signatures.

All in all, in this paper, we provide ample empirical evidence to show that the complexity of names
in X.509 is so high that it actually deters compliant and correct implementations. This begs the
philosophical question: if a standard is not followed by anyone, is it still a meaningful standard? With
the lessons learned from our investigation, we answer this question in the negative. In particularly,
we argue that for a security-critical infrastructure such as X.509, it is more beneficial to focus on
simplicity, instead of carrying over some rarely used flexible options, the benefits of which are often
historical and hypothetical. Based on our findings and discussions exchanged with several library
developers, we have identified possibilities that, without breaking compatibility with the current
X.509 format, can help tame its unnecessary complexity. As an example, the presence of subject
and authority key identifiers (known as extensions SKI and AKI) can make step ❷ much simpler by
checking equality of identifiers instead of dealing with names. Furthermore, the original X.509 is
a general profile that is not tied to a particular application. By focusing on a specific application,
which makes sense for important ones such as the Web, stronger assumptions can be brought in by
its standardization committees (e.g., the CA/B forum for Web) to further simplify the name format
and processing rules, which can ultimately lead to smaller and more consistent implementations.

Our contribution can be summarized as follows:

• We use three testing approaches to comprehensively analyze the name processing and
matching logic in 23 open-source X.509 PKI libraries, discovering 119 instances of deviations
from standards. This exposes a significant gap between the requirements stipulated in RFCs
and actual real-world implementations.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:4 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

• We evaluate our test coverage and show that our portfolio of testing approaches indeed led
to a more in-depth investigation of X.509 name processing than previous work.
• We have responsibly shared our findings with library developers, and exchanged opinions
with them. At the time of writing, two CVE numbers are assigned, and several libraries have
already made enhancements.
• Drawing from the lessons learned from our findings and developers’ opinions, we discuss
practical ways of taming the complexity of names in X.509.

2 Preliminaries
This section introduces the X.509 certificate structure and the verification process. We briefly
explain the role that name strings play in certificate verification, the relevant string processing
rules, and the notation we use. An overview of the name-related verification tasks, i.e., name
chaining (step ❷) and hostname verification (step ❺), as well as the relevant fields and extensions
can be found in Figure 1.

2.1 Name Attributes and String Types
There are many name attributes defined for X.509. The common ones include [CN], which refers to
the common name attribute in issuer/subject name, and [dns], which refers to the dnsName attribute
in SAN. A list of commonly used name attributes is shown in Table 1.

Name attributes can take on various string types, the options of which are shown in Table 2. Note
that these string types take different character sets (charsets) and encoding rules. The hierarchy
of their charsets is visualized in Figure 2. Also note that even if 2 string types take the same
charset, their encoding rules can still be different. For example, both utf8String and universalString
take the Unicode charset, but universalString uses 4 bytes to encode a character, while utf8String
has variable-length encoding (1-4 bytes). As we will show later, these string types, charsets, and
encoding are a major source of confusion and standard deviation in X.509 implementations.
Notation. In the rest of the paper, we will use the notation

[attrName]=<strType>‘strVal’(bytes)
to denote a name attribute string. As an example, [CN]=‘aa’(0x6161) describes a common name of
string type utf8String, with the string value being ‘aa’. For simplicity, (bytes) will not be shown if the
‘strVal’ is self-evident. We use (bytes) = (None) to denote an empty string. If <strType> is not present,
the default string type for [CN] and [dns] are utf8String and ia5String, respectively. We also define a
special attribute, [in], which is used to denote the (expected) hostname input that an application
programmer has provided for hostname verification, which takes the string type ia5String.

2.2 Name Chaining (NC) and Chain of Trust
The chain of trust is used to establish a trust relationship between the Certificate Authority (CA) and
different entities. The CA generates a digital signature for the entity certificate to ensure integrity
and authenticity. The leaf certificate of the chain, also known as the end-entity (EE) certificate, is
associated with the specific entity being authenticated. During the verification process, the verifier
has to build a candidate path from the EE certificate to a CA certificate in its trust store. According
to the validation algorithm outlined in Section 6 of RFC5280, as a part of this chain building exercise,
the verifier checks whether each certificate on the candidate chain has an issuer name matching
the subject name of its predecessor, the presumed issuer. This is known as name chaining (NC),
and corresponds to step ❷ in Section 1.

According to RFC5280 [2], both the issuer and subject name fields are values of the type Distin-
guished Name (DN). The type DN is defined as a sequence of Relative Distinguished Name (RDN),
where RDN is a set of attribute type and value pairs. An example attribute type in RDN is the Common

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:5

X.509 Certifiacte (CA)

Issuer:
 C: (printable) US
 CN: [printable] aaName

Chaining Subject:
 C: [printable] US
 CN: [printable] aa
...
Other fields, e.g.,
Extension
...

Signature

X.509 Certifiacte (End-Entity)

Issuer:
 (C): [printable] US
 (CN): [printable] aa

Subject:
 (CN): [utf8] abc.com

...

Extension:
 SAN:
 (dnsName): [ia5] abc.com
 ...
 CRL: ...

SignatureHostname
verification

Client

Name
Chaining

Domain name
(User input)

Fig. 1. Verification tasks, fields and extensions
related to names

Fig. 2. Hierarchy of the charsets of common string
types used to encode DN and SAN attributes

Table 1. Name attributes and their string types

Field Attribute Type Attribute Value String Type
and Length Constraint (if any)

Issuer /
Subject
(type DN)

Country (C) printableString/ numericString
SIZE (2) / SIZE (3)

Organization directoryString SIZE (1 - 64)
Organizational

unit directoryString SIZE (1 - 32)

Distinguished
name qualifier printableString

State/
Province name directoryString SIZE (1 - 128)

Common name (CN) directoryString SIZE (1 - 64)
Serial number printableString SIZE (1 - 64)

Locality directoryString SIZE (1 - 128)

SAN
dnsName (dns) ia5String SIZE (1-128)
rfc822Name ia5String SIZE (1-255)
iPAddress OCTET (8 octets)

Table 2. X.509 string types and their charsets

String Types Description, encoding, and charset

bmpString
Basic Multilingual Plane of ISO 10646,

2-byte fixed length encoding for each char

ia5String
The charset is synonymous with
ASCII (International Alphabet 5)

numericString Digits (0–9) and SPACE
printableString Character set: a–z, A–Z, 0–9, '()+-./:=? and SPACE

teletexString
CCITT/ITU-T T.61 character set,

1-byte fixed length encoding for each char

universalString
ISO 10646 charset in UTF-32 encoding
(four-byte fixed length for each char)

utf8String
ISO 10646 charset in UTF-8 encoding

(variable length from 1 to 4 bytes for each char)
visibleString ASCII characters without control codes

directoryString
A general term, choose from { utf8String, bmpString

teletexString, printableString, universalString }

Name (CN). A detailed list of attribute types, as well as the string types and length constraints of
their attribute values, can be found in the Issuer/Subject rows of Table 1.

The rules for matching a CA’s subject (DN1) and an entity’s issuer (DN2) defined as follows [2]:
1) DN1 and DN2 have the same number of RDNs, 2) for each RDN in DN1, there is a matching RDN
in DN2 in the same attribute, and 3) for each matching RDN pair, the RDNs’ type should be the same
and the values should match exactly after running the string preparation (stringprep) algorithm.
For example, if the CA’s subject DN has [CN]=<utf8String> ‘aa’ and the EE’s issuer DN has [CN]=
<ia5String>‘aa’, the two should not be considered a match because of a type mismatch . Moreover,
since the ia5String type is not allowed in the CN attribute (see Table 1), one can also argue that the
EE’s issuer DN has a syntax error. In any case, this certificate chain should fail in the NC task.

Additionally, the string value of an attribute should be made of legal characters with respect to
the charset of its string type. Otherwise, one can again argue for a syntax error on the certificate.
For instance, a certificate with [CN]=<printableString>‘aa!’(0x616121) should be invalid, as ‘!’ is not
legal within the charset of the printableString type.
As discussed above, issuer and subject attribute strings are processed by stringprep before

matching. X.509 implementations “MUST use LDAP stringprep profile, as specified in RFC 4518 [37],
as the basis for comparison of distinguished name attributes encoded in either printableString or
utf8String” (Section 7.1 of RFC5280 [2]). The LDAP stringprep imports detailed processing rules from
RFC3454 [20], specifying the standard character handling rules for Unicode strings. In short, it lifts
a string to Unicode by mapping characters to Unicode code points, applies Unicode normalization,
then checks for illegal characters and removes insignificant characters such as redundant space
characters. Following a successful stringprep, implementations should be able to match a CA’s

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:6 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

subject DN [CN]= ‘AA\x00\x08’ (0x41410008) to EE’s issuer DN [CN]= ‘aa’ . Interestingly, as we will
demonstrate later, the LDAP stringprep is often not followed by open-source implementations.

2.3 Hostname Verification (HV)
After establishing the chain validity, hostname verification (HV) is performed to ensure the EE’s
identity aligns with the application’s input. Incorrect implementations of hostname verification
can potentially lead to name confusion, which might in turn open doors to impersonation attacks.

AlthoughHV is also essentially a string matching task, its rules differ from that ofNC. Hostname
definition can trace back to RFC1123 [3]. It says the hostname can only include [a-zA-Z0-9], dash (‘-’),
and dot (‘.’). In X.509, the dnsName attribute in SAN field of extensions is used to store domain-based
hostnames. For hostnames represented by the dnsName attribute, implementations should adhere to
the descriptions in [2, 23, 28, 29]. In short, the verifier implementation should check for disallowed
characters, and then apply case-insensitive matching while honoring wildcards. Because dnsName
can only be of the ia5String type (see Table 1), in order to fit in its charset, internationalized domain
names (IDNs) need to be converted to Punycode [12] before getting stored in SAN at certificate
issuance time. During verification, the implementation should apply the STD3AsciiRules (STD3) to
further restrict characters from ia5String, as some ASCII characters, such as control codes, cannot
be part of a valid domain name.

To honor wildcards, there are several constraints: 1) a wildcard should only appear and affect the
leftmost subdomain, 2) it should not be used in second-level domain and top-level domain, and 3) a
wildcard on the right hand side of character(s) is not allowed. For instance, [dns]=‘*.a.a’ is acceptable,
but [dns]=‘a.*.a’ and [dns]=‘x*.a.a’ are not; and [dns]=‘*.a.a’ can match [in]=‘a.a.a’ but not [in]=‘b.a.a.a’.

In terms ofHV, a point of contention is the role of EE’s CN attribute in the subject field. According
to some specifications [2, 30], if the dnsName attribute is not present on the EE certificate, the EE’s
CN attribute can be checked for HV. When the CN attribute is used in HV, stringprep, as described
in Section 2.2, should still apply, and the restrictions on string type and charset outlined in Tables 1
and 2 also apply. Additionally, there is no explicit wildcard matching rules for the CN attribute.

In the rest of the paper, HV-SAN refers to the case of HV performed on SAN, and HV-CN refers
to the case of HV performed using CN when a SAN with dnsName is absent on the EE certificate.

3 Problem Definition and Motivations
Here we discuss the name matching problem and motivation behind our methodology.
Problem definition. In this paper, the main question we ask is whether for a given implementation
of X.509 validation, the semantics of name matching are equivalent to the one prescribed in the
standard. Simply put, we ask the question: in the context of NC and HV, are the instantiations of the
abstract NameMatching function in implementations correctly following the standards?

Abstractly, the function NameMatching takes two names, Name1 and Name2, and returns a Boolean
signifying whether they match or not. Logically, NameMatching can be further broken down into
3 functions: CheckTypes, Transform, MatchStrings. First, CheckTypes checks whether Name1
and Name2 have correct string types for their attributes (Table 1), and whether all characters in
an attribute are legal with respect to its string type (Table 2). Then, Transform performs the
canonicalization of Name1 and Name2 and returns CanonicalName1 and CanonicalName2. As an
example, Transform should be instantiated with the logic of LDAP stringprep for NC. Finally,
MatchStrings checks whether attributes in CanonicalName1 and CanonicalName2 have matching
types and string values. Depending on the attribute string types, MatchStringsmight use different
matching logic (e.g., exact bitwise, case-insensitive, wild card matching, etc.).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:7

Our investigation mainly focuses on identifying semantic bugs that makes an implementation of
NameMatching to deviate from the standards. Although not the main focus, discovering memory
safety bugs can be a by-product of this investigation. Bugs in any of the 3 functions that constitute
NameMatching can make it return a wrong verdict on whether Name1 and Name2 match. For instance,
a loose CheckTypes might allow certificates with names made of illegal characters to be accepted.
Likewise, improper canonicalization in Transform and wrong matching logic in MatchStrings
can incorrectly recognize two strings as a match or mismatch. These bugs are undesirable in NC,
because they can lead to a loss of service (i.e., when a trusted CA does not get recognized as the
legitimate issuer), or a loss of performance due to extra signature verifications being performed
(i.e., when a trusted CA gets erroneously identified as a candidate issuer). In contrast, bugs in HV
can have more severe security repercussions, potentially opening doors to impersonation attacks.
Motivation for name field-specific testing. A design choice for testing is to decide whether to
test the implementation end-to-end or to just focus on the name checking fields. In this discussion,
we consider end-to-end testing to be the approach where one crafts input certificate chains that
simultaneously test the general enforcement of semantic requirements on many different certificate
fields and extensions. Examples of such an approach include FrankenCert [4], Mucert [11], Symcerts
[7], and RFCCert [10]. In contrast, examples of field-specific testing include HVLearn [32], Morpheus
[36], and an earlier work by Chau et al. [8]. In our investigation, we follow the field-specific approach
and focus only on name-related fields. This choice is motivated by the following reasons. First, the
potential search space for finding incorrectness in an X.509 library is very large, and as a result,
targeting specific fields is more likely to make the testing more focused and be able to exercise the
subtle logic of name processing, essentially trading breadth for depth in the investigation. Second,
when multiple fields of different semantics are simultaneously tested, the test results can become
less interpretable. This is due to the fact that implementations tend to reject a certificate as soon as
possible, typically when the first problem on a certificate is encountered. Consequently, if an input
certificate chain with multiple problems in different fields gets rejected by an implementation, it is
not immediately clear which problematic field triggered the rejection. Focusing on specific fields
can improve the interpretability and explainability of the test results.
Motivation for a portfolio of testing approaches.Nowwe discuss the next design choice, which
is picking testing approaches that are effective for our problem. Tried-and-true choices include
crafting inputs with domain knowledge, adaptive fuzz testing, and dynamic symbolic execution, each of
which come with their own advantages and disadvantages. Crafting meaningful test inputs requires
domain knowledge, and can be challenging to scale up. Fuzz testing can increase the scalability, but
the automatically generated test cases might not lead to easily interpretable results, and it might
occasionally get stuck due to specific quirks of implementations. Symbolic execution provides a
useful formula-based abstraction for finding logical bugs and might achieve good code coverage, but
it can suffer from the problem of path explosion if the test subject makes a large number of branching
decisions, and not all path constraints are easy to solve. In particular, we observed that certain X.509
implementations instantiate MatchStrings as Hash(CanonicalName1) =? Hash(CanonicalName2).
Symbolically executing such program code and finding satisfiable input values is tantamount to
attacking collision resistance of cryptographic hash functions, and the resulting path constraints
are extremely difficult (if not impossible) to solve. Finally, a symbolic execution engine can typically
only handle test subjects in an intermediate representation that it supports well, which often
restricts the source language that it can handle.

All of the three testing approaches have relative strengths and weaknesses. Since our goal is to
thoroughly investigate X.509 name implementations, we take a portfolio of approaches in which,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:8 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

when feasible, we test each implementation with all of the applicable approaches. As we will show
later, this allows our investigation to achieve a reasonably good combined coverage.

4 Experiment Setup and Preliminary Study
4.1 Test Subject Collection
From previous works and online open-source repositories, we collected common cryptographic,
IPSec, and TLS libraries that may contain implementations of X.509. Then, we inspect their API
documentation and source code if necessary, to determine if they have a usable implementation of
NC and HV. Libraries that do not have these are excluded from our analysis. In the end, we are left
with 23 open-source X.509 libraries written in 9 different programming languages. The list of test
subjects and their versions can be found in the anonymous repository listed in Section 10. For each
of these libraries, we consult its API documentation and create test harnesses for NC and HV.
Some libraries (e.g., WPA) can outsource X.509 functionalities to other libraries (e.g., OpenSSL).

However, so long as they have their own internal implementation of X.509, we expose their internal
implementations to our test harness to increase the diversity of our test subjects. We also note that
some libraries, including the Apache ones, rely on Java’s JSSE for chain validation (which includes
NC), but they implement and perform their own HV.

4.2 Preliminary Study Using Inputs Crafted with Domain Knowledge
We first prepared a collection of test cases using domain knowledge. This approach is not meant
to be an in-depth investigation on its own, nevertheless, as a preliminary study, it can help us
determine problems that can be revealed without having to go deep into the execution paths.
Specifically, the focus here is mainly on the attribute lengths and charsets. For example, we are
interested to see whether certificates with zero-length or absent RDNs are accepted, whether
constraints on string types and lengths are enforced, whether certain attribute types are supported
and checked by an implementation, and whether implementations reject illegal characters with
respect to the charset of the attribute string types. These questions can often be answered in the
negative with one counterexample.
We created test cases based on the name and string specifications in references [20, 23, 31, 37],

for which a summary can be found in Table 1 and Table 2. As shown in the tables, if present in an
X.509 certificate, each attribute has a minimum and maximum length, as well as the acceptable
string types, which in turn limits the permissible character set of the attribute. Our tests mainly
focus on the CN and SAN fields of the name structure shown in Table 1, so all of our test cases leave
the other certificate fields and extensions well-formed and valid. We ensure valid signatures by
signing the test certificates with a self-generated private key. In the end, 2299 test inputs (certificate
chains) were created for NC, and 31 for HV. We note that the NC test inputs were created by a
simple script that enumerated straightforward combinations of <attribute type, correct/incorrect string
types>, and <string type, legal/illegal characters>. The name attributes and string types, as well as what
count as legal and illegal characters, correspond to Table 1 and Table 2. Because the charsets and
string types are well-defined, it only took several man-hours of manual effort to inspect and identify
problems in the test results.

4.3 Findings
Table 3 summarizes the findings from the preliminary study. There are indeed many violations
regarding lengths of attributes and strings, as well as illegal string types and characters. For
instance, in NC, 18 libraries allow certificates with zero-length name attributes (e.g., [CN]=(None),
marked #𝑀1 in Table 3), which are syntactically malformed as they directly violate the string

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:9

Table 3. Findings from the preliminary study

Issues
Libraries

ax
TL

S

Be
ar

SS
L

Bo
ri

ng
SS

L

Bo
ta

n

Gn
uT

LS

Ma
tr

ix
SS

L

mb
ed

TL
S

Op
en

SS
L

Wo
lf

SS
L

St
ro

ng
Sw

an

WP
A

we
bp

ki

ce
rt

va
li

da
to

r

Py
-S

SL

Go
-C

ry
pt

o

Er
la

ng
-O

TP

Bo
un

cy
Ca

st
le

Su
nJ

SS
E

ht
tp

cl
ie

nt

CX
F

PH
P-

Se
cL

ib

No
de

.j
s

Fo
rg

e

NC

#𝑀1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

-

✓ ✓ ✓

-

✓

-

✓
#𝑀2 ✓ ✓ ✓
#𝐸 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
#𝑇 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
#𝑆 ✓ ✓ ✓ ✓ ✓ ✓ ✓

HV

#𝑊

-

✓ ✓ ✓ ✓ ✓ ✓

- -

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

-#𝑊𝐶𝑁 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
#𝑈𝐶1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
#𝑆 ✓

✓: detected -: not applicable 𝑀𝑖 : missing attributes 𝐸: empty DN 𝑇 : string Type mismatch
𝑆 : case Sensitive 𝑊 : wildcard position issue 𝑊𝐶𝑁 : applying wildcard to CN in HV 𝑈𝐶𝑖 : unexpected char

lengths requirements in Table 1. Similarly, 16 implementations accept certificate chains with empty
issuer/subject fields. According to the RFC5280 [2], the issuer field MUST contain a non-empty DN
value (Section 4.1.2.4). Likewise, for CA certificates, the subject field MUST be populated with a
non-empty DN value (Section 4.1.2.6). Thus, our test cases with the EE certificate’s issuer field and
the CA certificate’s subject field set to an empty sequence, can be seen as malformed inputs that
should not be accepted. 3 implementations accept a pair of issuer and subject names even when
they do not have the same number of attributes (#𝑀2 in Table 3). This deviates from the standard’s
DN matching rules outlined in Section 2.2. For example, we found that axTLS ignores some RDN
attributes, such as Surname, when it tries to match DNs.

Notably, in NC, we found 12 implementations accept mismatched attribute string types (Findings
#𝑇 in Table 3). For example, the types utf8String and printableString are matched by OpenSSL.
Because of this, some Unicode characters outside the charset of printableString, can also be put in
an attribute of the type printableString, which OpenSSL and other libraries would accept. In other
words, the attribute types and their corresponding charsets are often neglected by implementations,
many of which are willing to accept malformed inputs. In HV, we found that illegal characters
outside the STD3 ASCII range, can be accepted by all implementations (#𝑈𝐶1 in Table 3). For
both NC and HV, some libraries incorrectly use case-sensitive matching in their instantiations of
MatchStrings (#𝑆 in Table 3). Furthermore, some libraries incorrectly perform wildcard matching
in HV-CN and when wildcard appears in wrong positions (#𝑊𝐶𝑁 and #𝑊 in Table 3).

5 Automated Testing
To further investigate other aspects of name processing, including the support for stringprep and
wildcards, as well as intricacies in the string matching logic, we further apply 2 automated testing
approaches. For the sake of scalability, in both testing approaches, we only consider a certificate
chain with a length of 2. Certificate fields and extensions other than CN and SAN are left well-formed
and valid. An overview of the high-level workflows can be found in Figure 3.

5.1 Adaptive Fuzz Testing
We developed a tool for performing adaptive black-box fuzzing to test the name-matching functions
with automatically generated inputs. We chose the black-box setting so that this can be applied to
all of our test subjects written in different programming languages. Several issues already detected
in preliminary study can now be purposefully ignored during fuzzing, enabling us to focus on other
aspects (e.g., stringprep). The test harnesses created for preliminary testing are reused here.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:10 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

Conceptually, our fuzzing tool generates concrete values for Name1 and Name2, which are then
used to test an implementation of NameMatching. It applies mutations to certificate name fields,
starting from a fixed set of well-formed seed certificates. A high-level description of our fuzzer’s
behavior is presented in Algorithm 1. For generating mutated certificates, we maintain an internal
representation of a certificate, and mutate the chosen certificate fields. The mutated internal
representation is then serialized into ASN.1 DER representation using an ASN.1 library [17]. This
has to be done at the ASN.1 level but not the X.509 level, because regular X.509 libraries would
forbid our mutated certificates due to their inbuilt syntactic checks. To further reduce the search
space, we limit our tool to only modify name attributes of the EE certificate.

Loop until threshold is reached

Run test harness(es),
load cert from files

X.509 Cert 1

Subj:
 (CN): (aaaa)
Ext :
 SAN:

(DN): (a.com)
...

Replace the highlighted
attrributes by string

mutator

Mark the highlighted
attribute(s) symbolic

variable(s)

Construct the
certificate(s) &

sign them

Make test harness
and use MLS for

variable string length

Symbolically execute
the test harness with

KLEE

Model Enumeration
(conditional)

 Adaptive fuzzing workflow

Symbolic execution workflow

Seed Chains

until unsat

Output: test cases
& path constraint

Output: test cases
for each accepting

path

Output: return code
and error messages

(if any)

Implicit output: status
recording

X.509 Cert 2

Subj:
 (CN): (aaaa)
(no SAN)
...

Fig. 3. Workflows of the automated testing approaches.

Mutation strategies. Our tool, outlined in Algorithm 1, uses diverse mutation strategies. Each
strategy combines a string operator (add, replace, pad) with a character category, based on RFC
3454 [20] (e.g., control codes, spaces), refined by the ASCII boundary. A get_char function randomly
selects characters within each character category. The mutate function calls get_char and applies
a chosen mutation strategy to a string (𝑆) at all positions, creating mutated strings (𝑆 ′). These are
then applied to a certificate (𝐶), generating a set of test certificates (𝐶𝑐𝑡𝑥). We avoid redundant test
cases by recording and skipping previously generated ones. Accepted test certificates are stored
and serve as seeds for further mutations, iterating until a threshold. The initial seeds included
crafted certificates (Section 4) accepted by some libraries and those from symbolic execution. In the
end, the fuzz testing generated 78919 test cases for NC, 62877 for HV-SAN, and 22518 for HV-CN,
shared across all test subjects.
Result inspection. Using our domain knowledge, we partitioned the input space into classes of in-
puts that should be accepted or rejected, with all inputs within a particular class sharing the same ex-
pected outcome. Input classes that abide by RFCs’ matching standard (e.g., caseInsensitiveMatch)
should be accepted, and others (e.g., inputs with multiple wildcards) should be rejected. After testing,
a human-in-the-loop then looks at test inputs that got accepted by at least one test subject, and
then based on the corresponding input classes, decides (1) if the acceptance is erroneous, and (2)
whether the test subjects that rejected the inputs (if any) are erroneous. Altogether the manual
effort needed was less than 8 man-hours.

5.2 Symbolic Execution
Since our investigation targets open-source implementations, instead of a symbolic execution
engine that targets binary, we choose to use KLEE [5], which interprets LLVM bitcode generated
from source code. Because not every programming language are easily convertible to the subset of
LLVM IR that KLEE supports, we only use KLEE to test implementations that are written in C. For

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:11

each of the C libraries, we prepare one test harness for each of the NC and HV tasks. We override
the signature verification function of our test subjects, similar to what previous work [7] did. Due
to the semantics of the ASN.1 DER encoding, we avoid introducing symbolic ASN.1 lengths by
following the strategies proposed by previous work [7], which only marks name attribute value
bytes as symbolic. This way, all the lengths in ASN.1 DER take concrete values, which helps to
get through the parsing code of the test subject and explore its string normalization and matching
logic. The name attributes that are supported by a test subject (and are thus suitable for marking as
symbolic) were determined by our preliminary testing effort.
To increase the discovery of interesting input values, we further incorporate the meta-level

search (MLS) strategy [8] in our test harnesses, and apply the idea of model enumeration with
blocking clauses on KLEE’s output path constraints.
KLEE with meta-level search (KMLS). This strategy takes advantage of KLEE’s path-forking
behavior to automatically explore different combinations of input lengths with only one test
harness [8]. The key idea is that the ASN.1 DER encoding of a certificate exhibits linear length
constraints (e.g., the length of a parent node is given by the summation of the length of its child
nodes), which can also be symbolically executed and solved by KLEE. One can thus ask KLEE
to determine satisfying assignments to the lengths of different certificate components in the test
harness, and then programmatically pack the concrete and symbolic values into test certificates
before symbolically executing the actual entry point function of the test subject.
We adapted this strategy in our test harnesses to enable the target name attributes in the

certificates to have a short but variable length, which explores a larger search space without
additional manual effort. This, however, could increases the run-time burden of KLEE and worsen
the potential problem of path explosion. For the sake of practicality, we only allow the variable
lengths to range from 1 to 5. Based on our results, this limit works well for most amenable
implementations (except for OpenSSL).

Path Constraint
(from KLEE) Constraints No

Yes

Solver:
Check sat?

Add constraint:
negating soln

Get new
solution: soln

Init

Model Enumeration

End

Customized
constraints

Fig. 4. Workflow of the model enumeration loop.

Model enumeration with blocking clause introduction. We perform model enumeration
externally to KLEE, in an effort to enhance the test case generation. The key observation here is that
given an extracted path constraint which abstracts the branching decisions taken by a particular
execution path, the SMT solver does not always generate a test input that is interesting to us in the
context of name checking, especially when the test subject implements a lax or incorrect checking
logic to begin with. For example, if an implementation does not check the Country (C) attribute,
the SMT solver might report a test input where the CA’s subject DN with [C]=‘AA’ is a match to
EE’s issuer DN with [C]=‘AA’ . However, a more interesting test input that still satisfies the same
path constraint would be one that shows CA’s subject DN with [C]=‘BB’ is a match to EE’s issuer
DN with [C]=‘AA’ . This can be achieved by iteratively querying the SMT solver, and refining the
path constraint in each iteration by adding a new conjunction with the negation of the satisfying

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:12 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

assignment found in the previous iteration (a blocking clause), as depicted in Fig. 4. This iteratively
narrows down the search space and pushes the SMT solver to discover more satisfying assignments
that might be of interests.

Nevertheless, the model enumeration loop can sometimes discover many similar test inputs that
are uninteresting. For instance, if a name attribute has the wildcard character, the loop will end
up discovering numerous satisfiable assignments that can trivially match the wildcard. To further
reduce the search space and discover more potentially interesting test cases, we introduce additional
clauses (referred to as customized constraints in Fig. 4) to the path constraint from KLEE, before
the model enumeration loop begins. These clauses include constraints that prohibit wildcards and
restrict the charset (e.g., the STD3 rule) in the satisfiable assignments.

5.3 Findings
In the following subsections, we present our findings on the NC and HV tasks respectively. For
each individual finding, the automated testing approaches that were able to discover it are also
marked in Table 4. As discussed in Section 3, some implementations perform string matching on
hashed names, which cripples symbolic execution. This is why KMLS was not applicable to NC
in BearSSL, GnuTLS, MatrixSSL, and WolfSSL, but has much more success with them in HV. We
note that the automated testing approaches can also reproduce findings like #𝑆 , #𝑇 , and #𝑈𝐶1 in
Table 3. For simplicity, Table 4 only presents the new findings uncovered by automated testing.

5.3.1 Findings on NC. Insignificant characters remain significant. As discussed in Section 2.2,
implementations should apply the stringprep algorithm to preprocess name strings, a step of which
is to map insignificant control characters to nothing (effectively removing them) prior to matching.
However, we found that all of the implementations failed to faithfully follow this requirement.
For instance, none of the libraries accepted the certificate chain when the EE certificate’s issuer
DN has [CN]= ‘aa’ and the CA certificate’s subject DN has [CN]= ‘aa\u06dd’ . The two should
match, because, according to stringprep, \u06dd should be mapped to nothing. Interestingly, we
observed that some libraries are partially correct with respect to stringprep. For example, both
(and only) axTLS and SUN can accept [CN]=aa\0\0 as a match of [CN]=aa. Additionally, only Botan
and MatrixSSL can match strings with leading \r and trailing \0, but they also missed the other
insignificant characters. In any case, the big picture is that stringprep’s mapping rules are not
faithfully followed by implementations.
Name confusion. The issue of name confusion arises from the fact that the verification process can
incorrectly match visually and logically distinct strings. This issue is observed in only two libraries,
axTLS and StrongSwan. For axTLS, it mishandles truncation of string attributes on certificates.
Specifically, axTLS treats ‘aa\0\0a’ as a match of ‘aa’. To understand this phenomenon, we per-
formed root cause analysis, and found that the reason is because axTLS uses some C string functions
which treats the first occurrence of the \0 character as the null terminator. This means that even the
partial handling of insignificant character (mapping to nothing) discussed previously is likely a mere
coincidence, not that axTLS actually implements a subset of stringprep. For StrongSwan, through
root cause analysis, we found that whenever the certificates already have SKI and AKI, it uses those
for building a chain (instead of performing the traditional NC as stipulated in the standard [2]).
This also explains why StrongSwan has #𝑀1, #𝑀2, and #𝐸. We will discuss the implication of this
way of chain building in Section 7.
Name confusion caused by ignoring sting types. We found that OpenSSL matches [CN]=
<teletexString>‘$’(0xa4) to [CN]=‘¤’(0xc2a4) (Unicode code point a4). In this example, the code point a4
is $ in T.61 (teletexString) but ¤ in Unicode. Here, the implementation only tries to match the code

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:13

Table 4. New findings from automated testing

Name Ver. Task Findings KMLS Fuzz
axTLS 2.1.5 NC #𝑁 ✓ ✓

BearSSL 0.6 HV
#𝑈𝐶2 ✓ ✓
#𝑁 ✓ ✘

BoringSSL
chromium
-stable HV #𝑈𝐶2 - ✓

OpenSSL
1.1.1o
3.1.0

NC #𝑁 ✓ ✘

HV
#𝑁
#𝑈𝐶2

✓
✓

✘
✓

Name Ver. Task Findings KMLS Fuzz

OpenSSL
1.1.1o
3.1.0 HV #𝑈𝐶3 ✓ ✓

WolfSSL 5.1.1 HV #𝑂𝑅 ✓ ✘

StrongSwan 5.9.7 NC #𝑁 ✓ ✓

Erlang-OTP 22 HV #𝑁 - ✓

phpseclib 3.0.11 HV #𝑅𝐸 - ✓

Node
17.9
(open) HV

#𝑈𝐶2
#𝑈𝐶3

-
-

✓
✓

✓: detected ✘: not detected -: not applicable
𝑅𝐸: unexpected regex match 𝑁 : name confusion 𝑈𝐶𝑖 : unexpected char 𝑂𝑅: out-of-bound read

point of the encoded bytes, while assuming all string types follow the Unicode mapping between
charset and code points. In other words, the implementation lacks support and differentiation for
the T.61 charset, but does not reject certificates that use such string type. This issue is marked as
#𝑁 in Table 4.

5.3.2 Findings on HV. Because the HV can potentially match either CN or SAN, and the two have
different attribute definitions (see Section 2.3), here we present our findings with the suffix -CN or
-SAN to indicate the applicable field. We omit the suffix if a finding applies to both CN and SAN.
Discrepancies in using CN for HV-SAN. As discussed in Section 2.3, whether CN should be
used in HV is a point of contention and differs depending on the target application standards.
Unsurprisingly, there are discrepancy related to this.We found thatwhen SAN exists on the certificate,
only the checkHost functions in Node.js before version 18 will by default also consider CN as a
hostname candidate. Among most libraries, CN is used as a last resort, only when SAN is absent.
Illegal hostnames allowed in HV-SAN. Through our experiments, we found that many libraries
accept illegal hostnames in the dnsName attribute of certificates. As discussed in Section 2.3, although
the dnsName attribute technically has a string type of ia5String, the general expectation is that it
should be made of a more restrictive set of characters (STD3), and there are also some restrictions
on where the wildcard character can appear. Interestingly, most libraries do not strictly enforce this,
and have leniency in parsing and processing the dnsName attributes that contain illegal characters
(findings #𝑈𝐶1 in Table 4). We also found that these illegal characters (e.g., !) can be matched
against a wildcard character. dnsName with illegal characters can be seen as syntactically invalid
inputs, and the expectation is to reject them, possibly during parsing.
A related but arguably more severe issue, which allows two seemingly different domains to

match, exists in both BearSSL and OpenSSL. For instance, OpenSSL can accept code points beyond
ASCII at the starting position of a dnsName, so long as they are adjacent to the character . (dot).
Consequently, for [in]=‘.a’ and [dns]=<ia5String> (0xF1A2BEBE2E61) (i.e., the code point is ñ¢¾¾.a in
UTF-8), these two are considered to match, even though the extra prefix code points in dnsName
renders it an illegal hostname. This bug also affects Node.js if it is configured to use OpenSSL, as
well as previous versions of BoringSSL (findings #𝑈𝐶2 in Table 4).

Additionally, OpenSSL can also match [CN]=‘A.a’ with [in]=‘.a’. In fact, the character A can even be
replaced by [a-zA-Z0-9] and ‘$-[],+ˆ’, etc. Note that some of these characters render CN to contain
illegal hostnames, and we marked this as #𝑈𝐶3 in Table 4. We investigated the OpenSSL source

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:14 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

code and found that its implementation treats a leading dot as a cue to perform suffix matching,
and thus the left-most subdomain gets ignored.
Wildcard issues in HV-SAN. A special case to the aforementioned illegal hostname problem
concerns the processing of the wildcard character. We have identified two types of issues related to
this. The first issue concerns the lack of restrictions on where the wildcard character can appear
in a dnsName attribute. For instance, WolfSSL, Apache-CXF, and others do not limit the wildcard’s
position, allowing it to appear at the top-level domain. Similarly, Go-Crypto, Apache-HttpClient,
and some others allow wildcard to appear at the second-level domain. Wildcards at the non-leftmost
position are also accepted by many libraries. Some libraries, such as OpenSSL, even accept multiple
wildcards in a dnsName attribute. All of these deviate from the standard requirements discussed in
Section 2.3. We note that a subset of these findings were also discussed in a previous research [32],
and it appears that this issue has persisted in several libraries for many years. The second issue
is that wildcard matching can be performed incorrectly sometimes. For instance, we found that
[dns]=‘a*b*’ can match [in]=‘aaaa’ in WolfSSL. Both of these issues are marked as #𝑊 in Table 4.
Name confusion in HV-CN. We found a name confusion bug in Erlang-OTP, which ignores the
heading ‘.’ (dot) in a string duringHV-CN. For instance, both [CN]=‘..a’ and [CN]=‘.a’ can be incorrectly
matched with [in]= ‘a’ . Additionally, we also found name confusion in the implementations of
HV-CN in OpenSSL and BearSSL. This is basically the reincarnation of the T.61 handling problem
discussed in Section 5.3.1. Basically, both OpenSSL and BearSSL can parse CN of the teletexString
type, but always assumes the Unicode mapping of code points. Because of this, both of them can
match [CN]=<teletexString>‘$’(0xa4) to [in]=‘¤’(0xc2a4). All these are marked as #𝑁 in Table 4.
Wildcard misuse in HV-CN.We also found that 11 implementations apply wildcard matching
rule when performing HV-CN (findings #𝑊𝑐𝑛 in Table 4). For instance, some implementations can
match [CN]=‘*.a’ with [in]=‘a.a’, which deviates from the standard (see Section 2.3).
Regex misuse in HV.We found that PHP-SecLib misused regex match in its implementation of
the HV task, causing some special characters to function in the regex semantics (#𝑅𝐸 in Table 4).
As an example, for HV-CN, PHP-SecLib’s validateURL function thinks [CN]=‘a+’ is a match for
[in]=‘aa’. Furthermore, [CN]=‘[\D.]+’ can match any domain names without numeric characters, e.g.,
[in]=‘google.com’. For HV-SAN, these two examples also work (using the dnsName attribute).
Out of bound read in HV. We found that WolfSSL has an out of bound read problem in its
implementation of HV. The issue is caused by an improper length check on the input string [in].
In short, if [in] is not null terminated, the program code could read beyond its buffer boundary,
possibly until a null terminator is reached. This issue is marked as #𝑂𝑅 in Table 4.

6 Coverage Evaluation
We empirically evaluate coverage achieved by our investigation. The goal of this evaluation is not
about comparing the merit or efficiency of different approaches. The objective here is to show that
collectively, our investigation achieved better coverage in the specific context of name processing.
Our evaluation considers NC, HV-SAN, and HV-CN.
Baselines, setups and metrics.We select the seminal work FrankenCert [4] and HVLearn [32]
as representative baseline for NC and HV task, respectively. FrankenCert performs end-to-end
black-box fuzzing, as it mutates many different certificate fields and extensions at the same time.
On the other hand, HVLearn by design only explores HV, so it is not used as a baseline for NC.
We also considered other recent works including MuCert [11] and SADT [27], but because their
source code files are unavailable online, we resort to using FrankenCert as the baseline for NC. In
our evaluation, we measure code coverage at the line, function, and branch level.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:15

Algorithm 1 Fuzzing Algorithm
Input:𝐶 , 𝑆 ,𝑀
Output: 𝑆𝑡𝑜𝑟𝑒
Init: 𝑖𝑑𝑥 ← 0; 𝑁 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ; 𝑆𝑡𝑜𝑟𝑒 ← 𝑠𝑒𝑒𝑑

while 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
while 𝑁 do

𝐶 ← getCertToMutate(𝑆𝑡𝑜𝑟𝑒 , 𝑖𝑑𝑥)
𝑇 ← getMutationStrategy(𝑀 , random())
𝑆 ← getString(𝐶); 𝑆 ′ ← mutate(𝑆 ,𝑇)
𝐶_𝑐𝑡𝑥 ← packageToAsn1(𝐶 , 𝑆 ′)
for 𝐶′ in𝐶_𝑐𝑡𝑥 do

if testHarnessAccept(𝐶′ , 𝑆) then
𝑆𝑡𝑜𝑟𝑒 ← add(𝑆𝑡𝑜𝑟𝑒 ,𝐶′)

end if
end for
Update: 𝑁 ← update(𝑁)

end while
Update: 𝑖𝑑𝑥 ← update(𝑖𝑑𝑥);
Update: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 1;

end while

Explanation of variables:
𝐶 for current certificate
𝑆 for string to be mutated
𝑀 for mutation strategies
𝑁 for the threshold of mutation
𝑆𝑡𝑜𝑟𝑒 for the store of accepted certificate chains

Table 5. Example of NC/HV task’s coverage

(a) Coverage statistics for NC

Library Coverage Approach
FrankenCert(2M) FrankenCert(8M) Craft Fuzz KMLS C+F+KMLS

GnuTLS
Line 3211(4.2%) 3211(4.2%) 3407(4.5%) 3504(4.6%)

N/A
3530(4.6%)

Func 267(6.3%) 267(6.3%) 278(6.6%) 285(6.7%) 285(6.7%)
Branch 1643(3.0%) 1643(3.0%) 1728(3.1%) 1783(3.2%) 1812(3.3%)

OpenSSL
Line 6324(4.2%) 6324(4.2%) 5322(3.5%) 6419(4.2%) 6334(4.2%) 6565(4.3%)
Func 887(8.2%) 887(8.2%) 796(7.3%) 902(8.3%) 892(8.3%) 903(8.3%)
Branch 2745(3.0%) 2745(3.0%) 2291(2.5%) 2755(3.0%) 2711(3.0%) 2841(3.1%)

(b) Coverage statistics for HV

Library
(Task) Coverage Approach

HVLearn Craft Fuzz KMLS C+F+KMLS

OpenSSL
(HV-SAN)

Line 3703(2.4%) 3688(2.4%) 3710(2.5%) 3732(2.5%) 3749(2.5%)
Func 592(5.5%) 593(5.5%) 593(5.5%) 593(5.5%) 594(5.5%)
Branch 1540(1.7%) 1489(1.6%) 1530(1.7%) 1579(1.7%) 1588(1.7%)

OpenSSL
(HV-CN)

Line 3680(2.4%) 3627(2.4%) 3641(2.4%) 3926(2.6%) 3939(2.6%)
Func 587(5.4%) 585(5.4%) 584(5.4%) 593(5.5%) 593(5.5%)
Branch 1524(1.7%) 1469(1.6%) 1479(1.6%) 1699(1.9%) 1708(1.9%)

GnuTLS
(HV-SAN)

Line 1820(2.4%) 1799(2.4%) 1819(2.4%) 2115(2.8%) 2116(2.8%)
Func 146(3.5%) 146(3.5%) 146(3.5%) 162(3.8%) 162(3.8%)
Branch 974(1.7%) 947(1.7%) 970(1.7%) 1138(2.0%) 1141(2.0%)

GnuTLS
(HV-CN)

Line 1937(2.5%) 1869(2.4%) 1952(2.6%) 2400(3.1%) 2405(3.1%)
Func 151(3.6%) 145(3.4%) 151(3.6%) 173(4.1%) 173(4.1%)
Branch 1030(1.9%) 995(1.8%) 1045(1.9%) 1303(2.3%) 1306(2.3%)

For FrankenCert, we gave it the same seed certificate chains that we used in our adaptive fuzzing.
The number of extensions on all of the seed certificates is 4, which include the basic constraint,
SAN, SKI, and AKI. Because of this, in FrankenCert’s configuration file, we limit the number of
extensions to 4. Despite this limit, FrankenCert is still free to randomly mutate values of any
fields and extensions due to its end-to-end design. This larger search space gives Frankencert
some potential advantages in achieving a higher coverage than our name-field specific testing. For
fairness, we used FrankenCert to generate 8 million test cases, same as its original paper [4].
HVLearn attempts to learn a state machine that abstract the name matching logic by querying

the test harnesses. Because of this, HVLearn generates a state machine model instead of a set of test
cases when it finishes. To approximate its coverage, we print all the query strings that HVLearn
issued to the test harness, and then package them into our seed certificate to obtain concrete
certificate test cases. This enables a fair comparison and helps to avoid the potential influences
of other certificate fields and extensions that are not related to HV. The number of resulting test
cases for each test subject varies, ranging from the minimum of 157 test cases (mbedTLS) to the
maximum of 3863 test cases (GnuTLS).

Recall that, our portfolio of testing approaches consists of test cases crafted with domain knowl-
edge (denoted as Craft or simply C), fuzz testing (denoted as Fuzz or just F), and KLEE with
meta-level search (denoted as KMLS).

We note that KMLS was able to finish exploring NC and HV of different implementations with
varying execution time. The only exception was the NC task of OpenSSL, for which we terminated
after running for 30 days. Nevertheless, KMLS was able to explore a large number of execution
paths in that period. A detailed breakdown of the KMLS statistics can be found in the anonymous
repository in Section 10. Similar to what we did for HVLearn, for each test subject, we also package
the satisfiable assignments found by KLEE into our seed certificates to obtain concrete test cases for
coverage evaluation. For simplicity, we do not include the test cases found by model enumeration
in this evaluation, so the measured coverage of KMLS is a lower bound of what our investigation
has achieved.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:16 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

Finally, all the concrete test cases were replayed to their corresponding applicable test subject,
and we use lcov to collect their coverage statistics. We also note that because the portfolio of test
approaches target slightly different search spaces (Section 4), this evaluation is not meant to be
comparing the coverage of the 3 test approaches. The main point here is that they collectively yield
a good coverage for our investigation.
Results. Due to page limit, we show OpenSSL and GnuTLS as two representative examples in Table
5. A more complete coverage result can be found in the anonymous repository listed in Section 10.

The first interesting observation is that the test cases crafted with domain knowledge can already
yield a decent coverage. Second, our portfolio of approaches collectively delivers a better coverage
than the 2 baselines. In fact, even when FrankenCert is given more leeway to randomly mutate
other fields and extensions, our portfolio of approaches can often exercise more lines of code, more
functions, and more branches in total, under a more limited focus on only CN and SAN. As shown
in Table 5, Frankencert with 2 million and 8 million test cases achieved the same coverage. When
compared to HVLearn, our portfolio also yields more code coverage. This is perhaps unsurprising,
as the queries in HVLearn are all made of legal ia5String characters. In other words, mismatched
attribute types and illegal characters are not considered in its exploration.

7 Discussion
7.1 Limitations and Future Work
In our study, we employed three distinct approaches for name testing. Despite this, for the sake of
practicality, our tests do not achieve full completeness. We are also not claiming that the approaches
and tools we used are necessarily the best in class. For instance, coverage-guided greybox fuzzing
has been shown to be another promising bug-finding approach. It is conceivable that future work can
achieve further improvements in terms of coverage, and potentially discover yet more bugs related
to name checking. Nevertheless, the results of our investigation can be seen as a meaningful lower
bound of name-related bugs in X.509 implementations. More importantly, we believe this work
provides meaningful and ample data points to empirically demonstrate the engineering challenges
surrounding names in X.509, highlighting the gaps between standards and implementations.

Another challenge we faced was the lack of a test oracle. Differential testing might not be very
effective, as multiple implementations can all have the same deviation (e.g., practically none of the
tested libraries implement the required stringprep). We worked around this challenge by involving
human-in-the-loop, which requires domain knowledge. Although a recent effort managed to derive
a formally verified implementation of a subset of X.509 [16], we note that it does not contain
a verified implementation of stringprep or HV. Developing a programmatic oracle for testing
implementations of NC and HV remains an open problem.

7.2 Severity and Pathways to Exploitation
Curious readers might wonder what are the severity and how to exploit the findings discussed in
Sections 4.3 and 5.3. We note that several real-world operational factors can affect the success of an
end-to-end exploit. For example, whether one is able to register for a company or organization with
special characters, and whether CAs are willing to issue certificates containing special characters.
Take the regex match problem of PHP-SecLib as a representative example. As mentioned in

Section 5.3, a certificate with [CN]=‘[\D.]+’ can match any input hostnames (e.g., [in]=‘g.co’). In
order to obtain such a certificate, the attacker would first have to register an organization with the
name [\D.]+. We note that the list of characters allowed in organization names varies in different
jurisdictions. A quick investigation online suggests that this name might be permitted in the UK
under The Company, Limited Liability Partnership and Business (Names and Trading Disclosures)

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:17

Regulations 2015 (Section 2 [21] and SCHEDULE 1 [22]). If an attacker successfully registers an
organization, then the next step is to obtain a certificate from one of the trusted commercial CAs.
Typical CAs usually can issue multiple types of certificates at different validation levels, including
domain validation (DV), organization validation (OV), and extended validation (EV) certificates.
Although CAs usually require proof of ownership of a domain name for DV and EV certificates,
that is usually not necessary for OV certificates. In theory, with the legal documents of organization
registration, the CA might be convinced into issuing an OV certificate with the attacker chosen
name. Whether a CA forbids certain characters in the CN attribute depends upon its operational
policies, and can vary from CA to CA.
Generally speaking, to exploit the other findings on HV, the attacker would follow the same

template outlined above. The success of such attacks often depends on whether special characters
can slip through company registrations and CA’s vetting of signing requests. Because registering
organizations in many different jurisdictions and obtaining certificates of various validation levels
from different CAs are both are costly and time-consuming, we refrain from actualizing end-to-end
exploits. Nevertheless, relying solely on the issuing CAs to maintain compliance with standards
might not be the best approach, as some of them can also fumble in their operations and issue
non-compliant certificates [25]. We recommend implementations to tighten their verification and
reject obvious cases of invalid inputs, regardless of the operational policies of CAs.

In contrast, the findings on NC tend to have smaller security impact than their HV counterparts,
mainly due to the chain validity backed by digital signatures. However, their compatibility issues
may lead to less critical but undesirable outcomes. For instance, an implementation that performs
case sensitive matching (e.g., WolfSSL) might fail to recognize a legitimate CA certificate, thus failing
to build an otherwise valid chain of trust. On the other hand, an overly permissive implementation
might discover incorrect candidates that do not form a meaningful chain of trust. Verifying the
signatures of these candidate chains mitigate potential security problems, but could be a waste of
computational resources and time.

7.3 Bug Reports and Feedback from Developers
We reported our findings to the corresponding maintainers of implementations, and received some
interesting responses. First, the PHP-SecLib regex match problem has been acknowledged and
fixed by the developers. One CVE has been assigned to that finding. Second, the out of bound read
problem of WolfSSL has also been confirmed and fixed by its developers. Another CVE has been
assigned to that. The wildcard matching problem of [dns]=‘a*b*’ in WolfSSL was also confirmed
and partially addressed. The developers mentioned that they want to support this as a feature,
so instead of our recommendation of rejecting [dns]=‘a*b*’ due to it being an invalid hostname,
they opt to correct the matching logic instead. The name confusion problem due to heading dot in
Erlang-OTP has been confirmed ans fixed as well.

The development team at OpenSSL confirmed the problem of #𝑈𝐶2 inHV-SAN, and indicated that
plans are being made for future fixes. Interestingly, upon receiving our report of the teletexString
string problem (#𝑁), they agreed that the current way of handing non-Unicode code points is not
ideal, but considered this a non-security-critical issue. Similarly, the author of BearSSL attributed the
bugs primarily to unclear definitions, and noted that embedding large mapping tables for stringprep
(see Section 2.2) consumes significant amount of memory, which is not ideal for resource-limited
devices. The developers at StrongSwan confirmed that when the name chaining process fails, its
implementation only prints a warning text and does not result in a verification error. They instead
rely on SKI and AKI for chain building. Discussions with SunJSSE, OpenSSL, GnuTLS, and Botan
are still ongoing. Some developers are not as active, and we are still waiting for their responses.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

FSE066:18 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

We wish to express our gratitude to the developers for their timely responses and valuable feed-
back. The objective of this study is not to criticize the developers but to underscore the difficulties
involved in implementing a faithful X.509 validation according to the complex standards, and
open dialogues on whether the community really benefits from such standards. The feedback from
developers of OpenSSL and BearSSL actually echoes with our stance that the current specification
is unnecessarily complex, and a standard that no one follows is perhaps not a good standard.

7.4 Rethinking the Merits and Necessity of Complex Names
ForNC, although the certificate path validation algorithm defined in Section 6 of RFC5280 mandates
it, there are actually no perceivable security benefits. While the myriad of string types can accom-
modate characters from many different languages which might in turn improve human readability,
parsing and matching them during the validation of X.509 certificate chain greatly complicates the
implementation without concrete security gains. This is especially true when considering the facts
that during the programmatic certificate validation, users typically do not read the issuer names.
We argue that some of the rarely used string types can be removed from the standard. For

instance, while researching on this topic, we randomly sampled 2 million certificate chains from the
Censys [6] data set to gauge the usage number of certain string types. Among the certificate chains
we sampled, only 212 chains (0.01%) involve the teletexString string type. Recall that teletexString
is one of the source of confusion in OpenSSL (finding #𝑁 in Table 4). It is understandable that a
developer would choose to not support a heavily underutilized string type. Instead of complicating
implementations, it might be better to simply remove these string types from the standards.
Instead of NC, a better alternative for chain building would be to simply match the AKI with

SKI, the same strategy adopted by StrongSwan (see Section 5.3.1). In fact, according to RFC5280,
SKI must exist on certificates of conforming CAs, and AKI must exist on certificates issued by
conforming CAs. In that case, we recommend fully embracing the mandatory existence of SKI and
AKI, and the algorithm defined in Section 6 of RFC5280 can removeNC as a mandatory requirement,
and make matching AKI with SKI mandatory instead. Since the key identifiers in AKI and SKI are
basically hashes, they should be easier to parse and match than complex name structures. This
can make implementations much simpler. An additional benefit of this recommendation, is that
stringprep will be no longer necessary, which helps to reduce the size of the trusted code base, and
improve compatibility with resource-constrained platforms. Our current results suggest that no
one implements stringprep anyway, and according to library developers, a full-fledged stringprep
is indeed a pain point for small footprint implementations.

For HV, our recommendation is that the standards should be updated to explicitly deprecate the
use of common name (CN) in HV, and to clarify the syntactic (string type and charset) requirements
that implementations should enforce. This can help avoid unwarranted leniency from the handling
of the complex attribute types and rules associated with CN, and allow implementations to tighten
their validation decision boundary. We note that at the time of writing, RFC9525 is published, which
no longer allows CN to be used in HV, and it is supposed to obsolete RFC6125. Our results should
motivate support for this new standard. Nevertheless, it appears to us that this simplification and
clarification effort can go even further.

In the research and development community, the X.509 PKI is often referred to as the “Web PKI”,
and X.509 certificates are often called “TLS certificates”. This is understandable, as HTTPS/TLS are
some of the most widely used applications of X.509. From the perspective of instantiating a PKI
for the Web, however, inheriting the historical LDAP and its notion of distinguished names has
very limited benefits but greatly complicates the implementations. Distinguished names provide
a hierarchical name space useful for LDAP, however, the Web’s hierarchical name space today is
primarily based on domain names and IP addresses, not LDAP. As such, for applications such as

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:19

the Web, there is not much benefit in making subject and issuer names occupy two non-optional
certificate fields, and many other attribute/string types in SAN can also be removed. This is especially
true as users rarely manually inspect the subject/issuer names, and is simply not possible on many
IoT devices that lack displays.

8 Related Works
There is limited prior research on the topic of names and strings in X.509 certificates. The most
relevant work in this area is by Sivakorn et al. [32], which applies state machine analysis to study the
wildcard functionality in TLS libraries. However, wildcard rules are only a subset of the processing
and matching requirements associated with names in X.509. The state machine learning attempt
does ignore some intricate corner cases concerning string types and charsets. Nonetheless, it
demonstrates that discrepancies exist in implementations of HV, especially when it comes to the
enforcement of wildcard rules. Additionally, the work by Ma et al. [26] reveals that the names of
CA certificates are often inaccurate due to lax requirements and other operational complications.
This shows that name-related issues can also happen during certificate issuance, in addition to the
implementation-level problems discussed in this paper.
As string processing can be complex but essential to confirming identities, unexpected behav-

iors could become threats to security. For example, a vulnerability was recently discovered in
OpenSSL [14] in its code for parsing CRLs, which was caused by string type confusion. Kumar
et al. [25] found that CAs sometimes fail to populate subject alternative name extensions with
valid DNS names properly, among other issuance problems on the CA side. When international-
ized domain names (IDNs) are supported, the potential attack surface might become even wider.
Researchers have shown that certain Unicode characters can be misinterpreted, causing victims to
visit unintended destinations on the Internet [1].

Much other research has focused on finding bugs in X.509 implementations, using techniques like
symbolic execution [7], state machine learning [32], and fuzz testing [4, 11, 27]. Recently there are
also some efforts on testing the correctness of the parsing code [9]. However, most of them overlook
string-related attributes, and ignore the related processing issues. Other related works examined
name checking problems in applications [18, 19], enterprise Wi-Fi [35] and VPNs [34]. There are
also some recent attempts in bringing more formal guarantees into X.509 implementations [15, 16],
however, the subset of X.509 they target excludes some intricate string types and processing rules.

9 Conclusion
In this study, we employed a portfolio of true-and-tried approaches to test implementations of
X.509 name processing, and our investigation achieved better coverage than previous work. We
discovered that most implementations do not adhere to the specifications of names in X.509. In
particular, some findings can lead to name confusions, where names that should not be matched
are considered to match. Our findings provide ample evidence to show that the current standard is
unnecessarily complex, so much so that it actually discourages faithful and correct implementations.
With the lessons learned from our findings and developers’ feedback on our bug reports, we reflect
on the design and specification of names in X.509, and recommend possible ways to simplify it.

10 Data Availability
The artifacts, test cases, and additional results of our investigation can be found on GitHub at
https://github.com/x509-name-testing/name_testing_artifacts

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

https://github.com/x509-name-testing/name_testing_artifacts

FSE066:20 Yuteng Sun, Joyanta Debnath, Wenzheng Hong, Omar Chowdhury, and Sze Yiu Chau

11 Acknowledgments
We thank the anonymous reviewers for helping us improve our paper. This work was supported in
part by an award from the Empire Innovation Program of the New York State, a grant from the
Research Grants Council (RGC) of Hong Kong (Project No.: CUHK 24205021), as well as grants
from the CUHK IE department (project code: NEW/SYC, GRF/22/SYC, and GRF/23/SYC).

References
[1] Jonathan Birch. 2019. Host/Split: Exploitable Antipatterns in Unicode Normalization. Black Hat USA 2019

(2019), 1–30. https://www.blackhat.com/us-19/briefings/schedule/#hostsplit-exploitable-antipatterns-in-unicode-
normalization-16145

[2] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and David Cooper. 2008. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280. doi:10.17487/RFC5280

[3] Robert T. Braden. 1989. Requirements for Internet Hosts - Application and Support. RFC 1123. doi:10.17487/RFC1123
[4] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly Shmatikov. 2014. Using frankencerts for

automated adversarial testing of certificate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE, IEEE, San Jose, CA, USA, 114–129.

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted and automatic generation of high-coverage
tests for complex systems programs.. In OSDI, Vol. 8. USENIX Association, 209–224.

[6] Censys. 2024. Censys Dataset. Website. https://censys.com/
[7] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque, Huangyi Ge, Aniket Kate, Cristina Nita-Rotaru, and Ninghui Li. 2017.

Symcerts: Practical symbolic execution for exposing noncompliance in X. 509 certificate validation implementations.
In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, IEEE, San Jose, CA, USA, 503–520.

[8] Sze Yiu Chau,Moosa Yahyazadeh, Omar Chowdhury, Aniket Kate, and Ninghui Li. 2019. Analyzing semantic correctness
with symbolic execution: A case study on pkcs# 1 v1. 5 signature verification. In Network and Distributed Systems
Security (NDSS) Symposium 2019. The Internet Society, San Diego, CA.

[9] Chu Chen, Pinghong Ren, Zhenhua Duan, Cong Tian, Xu Lu, and Bin Yu. 2023. SBDT: Search-Based Differential
Testing of Certificate Parsers in SSL/TLS Implementations. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 967–979.

[10] Chu Chen, Cong Tian, Zhenhua Duan, and Liang Zhao. 2018. RFC-Directed Differential Testing of Certificate Validation
in SSL/TLS Implementations. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). 859–870.
doi:10.1145/3180155.3180226

[11] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate validation in SSL/TLS implementations.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 793–804.

[12] Adam M. Costello. 2003. Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in
Applications (IDNA). RFC 3492. doi:10.17487/RFC3492

[13] CVE-2022-3602. 2022. CVE-2022-3602. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3602.
[14] cve 2023-0286. 2023. cve-2023-0286. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0286.
[15] Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury. 2021. On Re-engineering the X. 509 PKI with Executable

Specification for Better Implementation Guarantees. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. ACM, Seoul, Republic of Korea, 1388–1404.

[16] Joyanta Debnath, Christa Jenkins, Yuteng Sun, Sze Yiu Chau, and Omar Chowdhury. 2024. ARMOR: A Formally
Verified Implementation of X. 509 Certificate Chain Validation. In 2024 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 200–200.

[17] eerimoq. 2023. asn1tools. https://github.com/eerimoq/asn1tools.
[18] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith. 2012. Why

Eve and Mallory love Android: An analysis of Android SSL (in) security. In Proceedings of the 2012 ACM conference on
Computer and communications security. 50–61.

[19] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. 2012. The Most
Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS ’12). Association for
Computing Machinery, New York, NY, USA, 38–49. doi:10.1145/2382196.2382204

[20] P. Hoffman and M. Blanchet. 2002. Preparation of Internationalized Strings (“stringprep”). RFC 3454 (Proposed
Standard). doi:10.17487/RFC3454 Obsoleted by RFC 7564.

[21] UK Statutory Instruments. 2015. The Company, Limited Liability Partnership and Business (Names and Trading
Disclosures) Regulations 2015. https://www.legislation.gov.uk/uksi/2015/17/regulation/2.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

https://www.blackhat.com/us-19/briefings/schedule/#hostsplit-exploitable-antipatterns-in-unicode-normalization-16145
https://www.blackhat.com/us-19/briefings/schedule/#hostsplit-exploitable-antipatterns-in-unicode-normalization-16145
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC1123
https://censys.com/
https://doi.org/10.1145/3180155.3180226
https://doi.org/10.17487/RFC3492
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.17487/RFC3454

On the Unnecessary Complexity of Names in X.509 and Their Impact on Implementations FSE066:21

[22] UK Statutory Instruments. 2015. SCHEDULE 1, The Company, Limited Liability Partnership and Business (Names and
Trading Disclosures) Regulations 2015. https://www.legislation.gov.uk/uksi/2015/17/schedule/1.

[23] ITU-T. 2019. https://www.itu.int/rec/T-REC-X.520-201910-I/en.
[24] Ulrich Kühn, Andrei Pyshkin, Erik Tews, and Ralf-PhilippWeinmann. 2008. Variants of Bleichenbacher’s Low-Exponent

Attack on PKCS#1 RSA Signatures. In Sicherheit 2008: Sicherheit, Schutz und Zuverlässigkeit. Konferenzband der 4.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI), 2.-4. April 2008 im Saarbrücker Schloss.

[25] Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle Beck, David Adrian, Joshua Mason,
Zakir Durumeric, J Alex Halderman, and Michael Bailey. 2018. Tracking certificate misissuance in the wild. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, IEEE, San Francisco, CA, USA, 785–798.

[26] Zane Ma, Joshua Mason, Sarvar Patel, Manos Antonakakis, Mariana Raykova, Zakir Durumeric, Phillipp Schoppmann,
Michael Bailey, Karn Seth, Sascha Fahl, et al. 2021. What’s in a Name? Exploring {CA} Certificate Control. In 30th
USENIX Security Symposium (USENIX Security 21). 4383–4400.

[27] Lili Quan, Qianyu Guo, Hongxu Chen, Xiaofei Xie, Xiaohong Li, Yang Liu, and Jing Hu. 2020. SADT: syntax-
aware differential testing of certificate validation in SSL/TLS implementations. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 524–535.

[28] E. Rescorla. 2000. HTTP Over TLS. RFC 2818 (Informational). doi:10.17487/RFC2818 Updated by RFCs 5785, 7230.
[29] Peter Saint-Andre and Marc Blanchet. 2017. PRECIS Framework: Preparation, Enforcement, and Comparison of

Internationalized Strings in Application Protocols. RFC 8264. doi:10.17487/RFC8264
[30] P. Saint-Andre and J. Hodges. 2011. Representation and Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security
(TLS). RFC 6125 (Proposed Standard). doi:10.17487/RFC6125

[31] Jim Schaad. 2020. CBOR Object Signing and Encryption (COSE): Header parameters for carrying and referencing X.509
certificates. Internet-Draft draft-ietf-cose-x509-08. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-ietf-cose-x509/08/ Work in Progress.

[32] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis, and Suman Jana. 2017. HVLearn: Automated
black-box analysis of hostname verification in SSL/TLS implementations. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, IEEE, San Jose, CA, USA, 521–538.

[33] Cong Tian, Chu Chen, Zhenhua Duan, and Liang Zhao. 2019. Differential testing of certificate validation in SSL/TLS
implementations: an RFC-guided approach. ACM Transactions on Software Engineering and Methodology (TOSEM) 28, 4
(2019), 1–37.

[34] Ka Lok Wu, Man Hong Hue, Ngai Man Poon, Kin Man Leung, Wai Yin Po, Kin Ting Wong, Sze Ho Hui, and Sze Yiu
Chau. 2023. Back to School: On the (In) Security of Academic VPNs. In 32nd USENIX Security Symposium (USENIX
Security 23). 5737–5754.

[35] Ka Lok Wu, Man Hong Hue, Ka Fun Tang, and Sze Yiu Chau. 2023. The Devil is in the Details: Hidden Problems
of Client-Side Enterprise Wi-Fi Configurators. In Proceedings of the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec’23). ACM, New York, NY. doi:10.1145/3558482.3590199 (Best Paper Award from
ACMWiSec ’23).

[36] Moosa Yahyazadeh, Sze Yiu Chau, Li Li, Man Hong Hue, Joyanta Debnath, Sheung Chiu Ip, Chun Ngai Li, Endadul
Hoque, and Omar Chowdhury. 2021. Morpheus: Bringing The (PKCS) One To Meet the Oracle. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security. 2474–2496.

[37] K. Zeilenga. 2006. Lightweight Directory Access Protocol (LDAP): Internationalized String Preparation. RFC 4518
(Proposed Standard). doi:10.17487/RFC4518

Received 2024-09-13; accepted 2025-01-14

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE066. Publication date: July 2025.

https://www.itu.int/rec/T-REC-X.520-201910-I/en
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC8264
https://doi.org/10.17487/RFC6125
https://datatracker.ietf.org/doc/draft-ietf-cose-x509/08/
https://datatracker.ietf.org/doc/draft-ietf-cose-x509/08/
https://doi.org/10.1145/3558482.3590199
https://doi.org/10.17487/RFC4518

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Name Attributes and String Types
	2.2 Name Chaining (NC) and Chain of Trust
	2.3 Hostname Verification (HV)

	3 Problem Definition and Motivations
	4 Experiment Setup and Preliminary Study
	4.1 Test Subject Collection
	4.2 Preliminary Study Using Inputs Crafted with Domain Knowledge
	4.3 Findings

	5 Automated Testing
	5.1 Adaptive Fuzz Testing
	5.2 Symbolic Execution
	5.3 Findings

	6 Coverage Evaluation
	7 Discussion
	7.1 Limitations and Future Work
	7.2 Severity and Pathways to Exploitation
	7.3 Bug Reports and Feedback from Developers
	7.4 Rethinking the Merits and Necessity of Complex Names

	8 Related Works
	9 Conclusion
	10 Data Availability
	11 Acknowledgments
	References

